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Abstract Gantry cranes are typically underactuated
nonlinear dynamic systems with highly coupled sys-
tem states. We propose in this paper a partially saturated
nonlinear controller for gantry crane systems by con-
verting the crane model into an objective (i.e., desired
closed-loop) system. The presented scheme guarantees
“soft” cart start by introducing a smooth saturated func-
tion into the controller. In particular, we first estab-
lish an objective system with desired signal conver-
gence and stability performance. Then, on the basis
of the objective dynamics’ structure, we derive a par-
tially saturated control law straightforwardly by solv-
ing one partial differential equation, without necessity
of performing partial feedback linearization operations
to the original crane model. The convergence and sta-
bility performance of the objective system is assured
with Lyapunov-based methods. In order to verify the
practical control performance of the proposed method,
we implement both numerical simulation and hardware
experiments to illustrate that the new method achieves
increased performance with respect to existing meth-
ods, with lessened control efforts.
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1 Introduction

Nonlinear underactuated mechatronic systems, includ-
ing cranes, nonholonomic mobile robots, underac-
tuated helicopters and vessels, etc., are playing an
increasingly important role in real-world applications.
For these systems, high nonlinearity and strong states
coupling are usually present. Moreover, the basic prop-
erty of such systems that more degrees-of-freedom
(DOFs) need to be dominated by less control inputs
brings further challenge for their controller develop-
ment. It is hence a hot research topic attracting much
attention [1–11]. Gantry cranes, as powerful indus-
trial tools, belong to the classification of underactu-
ated systems with complicated nonlinear dynamics.
The control problem for controlling cranes is impor-
tant yet challenging, for which a considerable amount
of studies have been done to improve the control sys-
tem performance. Linear control methods, such as opti-
mal control [12,13], trajectory planning [14,15], input
shaping [16,17], delayed feedback control [18], fuzzy
PID control [19], etc., have been developed to achieve
satisfactory performance. However, if the underactu-
ated load exhibits large-amplitude swinging motion,
the performance of these linearization-based methods
may possibly degrade. Hence, nonlinear crane con-
trol techniques are employed, which can be mainly
classified as energy-based methods [20,21], nonlinear
motion planning [22,23], saturation control [24,25],
sliding mode approaches [26–30], partial feedback
linearization-based method [31], and so on. In addi-
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tion to the control methods mentioned previously, many
researchers also apply the intelligent strategies includ-
ing genetic algorithms (GA) [32], neural networks
(NN) [33], and fuzzy logic control [34], to optimize
and improve the performance of the crane control sys-
tems.

For existing (crane) regulation/stabilization meth-
ods, the regulation/stabilization errors are usually
defined as the differences between the current state
variables (cart displacement) and their desired values
(desired cart location) [8–11,20,21,26,35,36]. Thus,
one potential issue is that the initial computed control
force relies greatly on the transportation distance (i.e.,
the initial positioning error). For a set of control gains
properly tuned for a specific transferring distance, when
the desired location gets farther in a different trans-
portation process, the control force (especially the ini-
tial force) will become much larger and may cause dam-
ages to the actuating motors. Moreover, the correspond-
ing large cart acceleration will excite large-amplitude
load swing angle, which is unexpected in practice. One
possible way to address this problem is to retune the
control gains when the desired location changes, but
it is cumbersome since tuning such nonlinear control
systems as cranes are usually complicated and there are
currently no general guidelines available.

This paper proposes a partially saturated nonlin-
ear control scheme for underactuated gantry cranes,
which achieves superior control performance and guar-
antees “soft” cart start, and a set of properly chosen
control gains works well for different transportation
processes of different distances, with less consumed
control efforts. It is known that the derivations for most
crane control methods, such as those in [20,21,24–
30,35], are established by fabricating a Lyapunov func-
tion and then taking its time derivative (to design the
control law). Different from these methods, by borrow-
ing ideas from the innovative and constructive energy-
shaping technique [37], we alternatively construct a
desired objective (i.e., closed-loop) system with some
specific structure and then obtain a control law capa-
ble of converting the original crane dynamics to the
objective system. We have also introduced a smooth
saturated function into the control law to successfully
reduce the control efforts, especially the initial con-
trol forces. The stability and signal convergence per-
formance are rigorously supported by Lyapunov-based
techniques. The proposed method is implemented both
numerically in the environment of Matlab/Simulink

and experimentally on a hardware gantry crane testbed,
which confirms that the proposed scheme can achieve
superior performance over existing schemes, in terms
of better swing suppression, reduced control efforts,
and increased robustness. In addition, the verification
results also illustrate that, for the proposed method, one
does not need to retune the control gains when the trans-
portation distance changes (becomes longer)—which
brings much convenience for practical implementation.

The contents of the paper are organized as follows.
The problem formulation is introduced in details in
Sect. 2. In Sect. 3, we construct an objective crane
system and then derive the control law. We prove the
asymptotic stability for the equilibria of the closed-
loop (objective) system in Sect. 4. Section 5 exhibits
both numerical simulation and hardware experimental
results. Finally in Sect. 6, some conclusions and dis-
cussions are provided.

2 Problem formulation

Let us consider an underactuated gantry crane system
with the following dynamics [14,22]:

M(q)q̈ + Vm(q, q̇)q̇ + G(q) = u, (1)

where q(t) = [x(t)θ(t)]T ∈ R
2 denotes the system

state vector with x(t) and θ(t) being the cart dis-
placement and the load swing angle, respectively; and
M(q), Vm(q, q̇) ∈ R

2×2, G(q), and u ∈ R
2 repre-

sent the inertia matrix, the centripetal-Coriolis matrix,
the gravity vector, and the control input vector, respec-
tively; they are explicitly defined as

M =
[

M + m ml cos θ

ml cos θ ml2

]
, Vm =

[
0 −ml sin θ θ̇

0 0

]
,

(2)

G =[ 0 mgl sin θ ]T, u = [ F 0 ]T � ϕF, (3)

where M represents the cart mass, m represents the load
mass, l is the cable length, ϕ is denoted by

ϕ = [ 1 0 ]T,

and F(t) represents the resultant force imposed on the
cart consisting of the following two parts:

F = Fa − Fr,
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wherein Fa(t) denotes the actuating force and Fr(t) is
the bridge friction force. In this paper, the following
friction force model, which is similar to the one pro-
posed in [38], is used to describe the bridge friction
force [22]:

Fr(ẋ) = Fr0 tanh (ẋ/ε) − kr|ẋ |ẋ, (4)

with Fr0, kr, ε ∈ R denoting friction-related parame-
ters.1 Using (2) and (3), the crane dynamics (1) can be
written in the following manner:

(M + m)ẍ + ml θ̈ cos θ − ml θ̇2 sin θ = Fa − Fr, (5)

l θ̈ + cos θ ẍ + g sin θ = 0. (6)

The control objective is to develop a control law
capable of regulating all the system state variables to
the equilibria; that is, the cart is driven to arrive at the
desired location while the unexpected load swing is
effectively suppressed and eliminated simultaneously
in the sense that

e(t) = [x − xd θ ]T � [ex θ ]T → [0 0]T , (7)

where xd ∈ R denotes the desired cart position, e(t) ∈
R

2 denotes regulation error vector, and ex (t) ∈ R is the
cart positioning error signal. Then, it is easily deduced
from (7) that

ė(t) = q̇(t) = [ẋ θ̇]T, ë(t) = q̈(t) = [ẍ θ̈ ]T (8)

which, together with (1) and (3), indicates that

M(q)ë = −Vm(q, ė)ė − G(q) + ϕF. (9)

In the next section, we will exploit a suitable control
law that achieves the control objective of (7).

3 Controller development

We will establish an objective crane system with
desired (stability) performance in this section. After
that, an appropriate control law will be developed to
convert the crane dynamics into the desired objective
system.

1 We focus our controller development on the resultant force
F(t) since, in this work, the model (4) will be utilized for feed-
forward friction force compensation, as will be shown in the
experiments in Sect. 5.

3.1 Objective system construction

In order to achieve the control objective of (7), we are
motivated to seek for a proper control signal u(t), so
that the system’s open-loop dynamics can be converted
into a closed-loop form with an unique asymptotically
stable equilibrium point at the desired state. Toward
this end, we want to construct an objective system
by respecting the following two basic principles: (1)
the equilibrium point of the objective system should
be asymptotically stable and (2) the structure of the
designed objective system ought to be similar to that of
the original crane dynamics so that the system matching
operations are easy to carry out. According to the fore-
going two points, based on the Euler–Lagrange struc-
ture of (9), we construct the following desired objective
system:

Md ë + �d ė + ∂ Pd(e)
∂e

= 0, (10)

where Md ∈ R
2×2 is a positive definite constant matrix

denoting the desired inertia matrix, �d ∈ R
2×2 is a

positive semi-definite matrix that denotes the damping
matrix, and Pd(e) ∈ R

+ represents the desired objec-
tive potential energy. In addition, the following con-
ditions are satisfied: (1/2)ėT Md ė + Pd(e) is positive
definite with respect to e(t), ė(t) and has a minimum at
the equilibrium point. Then, the following proposition
can be obtained correspondingly.

Proposition 1 The objective system (10) is Lyapunov
stable at the equilibrium point.

Proof Consider the following positive definite scalar
function:

V (t) = 1

2
ėT Md ė + Pd(e). (11)

Taking its time derivative along the trajectories of (10)
produces the following result:

V̇ (t) = ėT
(

Md ë + ∂ Pd(e)
∂e

)
= −ėT�d ė ≤ 0. (12)

Hence, the equilibrium point is stable in the sense of
Lyapunov. ��

In view of Proposition 1, if the damping matrix
�d is chosen appropriately, we can make the equi-
librium point asymptotically stable. Motivated by this

123



www.manaraa.com

658 N. Sun, Y. Fang

fact, we will carefully select proper values for Md , �d ,

and Pd(e) in the next subsection.

3.2 Objective system matching

By multiplying both sides of (10) with M−1
d and mak-

ing some mathematical arrangements, we derive that

ë = −M−1
d �d ė − M−1

d
∂ Pd

∂e
,

which further implies that

M(q)ë = −M(q)M−1
d �d ė − M(q)M−1

d
∂ Pd

∂e
. (13)

Substituting (9) into (13) produces the following result:

Vm ė + G(q) − ϕF = M(q)M−1
d �d ė

+ M(q)M−1
d

∂ Pd

∂e
, (14)

which can be rearranged into the following manner:

ϕF = Vm ė + G(q) − M(q)M−1
d �d ė

− M(q)M−1
d

∂ Pd

∂e
. (15)

Since ϕ = [1 0]T is an invertible column vector,
the control input F(t) can merely affect the system
dynamics within ϕ’s range space, namely the actuated
part. In other words, for a convertible objective system,
the following constraint should be satisfied:

ϕ⊥ϕF = ϕ⊥
[

Vm ė + G(q) − M(q)M−1
d �d ė

−M(q)M−1
d

∂ Pd

∂e

]
= 0, (16)

where ϕ⊥ = [0 1] represents a left annihilator of ϕ.
Then, the control force F(t) can be calculated from
(15) as

F(t) = ϕ+
[

Vm ė + G(q) − M(q)M−1
d �d ė

−M(q)M−1
d

∂ Pd

∂e

]
, (17)

where

ϕ+ �
(
ϕT ϕ

)−1
ϕT = ϕT = [

1 0
]

(18)

denotes the left Moore–Penrose pseudo inverse of ϕ.
Therefore, if Md , �d , and Pd(e) in the objective system
(10) are calculated, one can directly obtain the control
force F(t) from (17).

Remark 1 It is clear that (17) can be naturally derived
from (15). In fact, with Md , �d , and Pd(e) being
determined by (16), F(t) satisfying (17) can uniquely
imply that (15) holds. To illustrate this point,we will
implement some mathematical analyses. For brevity,
we denote

A = Vm ė + G(q) − M(q)M−1
d �d ė

− M(q)M−1
d

∂ Pd

∂e
� [a1 a2]T ∈ R

2.

Note that by determining Md , �d , Pd(e) from (16),
we guarantee that (16) holds. Hence, according to (16)
and the fact of ϕ⊥ = [0 1], we have

ϕ⊥ A = [0 1][a1 a2]T = a2 = 0 ⇒ A = [a1 0]T.

Substituting F(t) of (17) into the left side of (15) yields

ϕϕ+ A =
[

1 0
0 0

]
[a1 0]T = [a1 0]T = A,

which is exactly the equation shown in (15) and hence
reveals that, subject to (16), we have (15) 	⇒ (17) and
(17) 	⇒ (15) uniquely.

In order to derive the control force F(t), we need
to determine Md , �d , and Pd(e) from (16). How-
ever, both ordinary and partial differential equations
are involved in (16); hence, to make the problem more
convenient to solve, we alternatively decompose it into
the following two equations:

ϕ⊥ [
Vm ė − M(q)M−1

d �d ė
]

= 0, (19)

ϕ⊥
[

G(q) − M(q)M−1
d

∂ Pd

∂e

]
= 0. (20)

To make the equations solvable, we need first to fix one
of these three terms. Here, for convenience, we fix the
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desired objective inertia matrix Md of the following
expression:

Md = 1

α

[
1 0
0 1

]
	⇒ M−1

d = α

[
1 0
0 1

]
, (21)

with α ∈ R
+ being a positive parameter. Subsequently,

we are admitted to solve �d from (19) and Pd(e) from
(20), respectively. Based on the structure of centripetal-
Coriolis matrix Vm in (2), it follows that

ϕ⊥Vm ė = [
0 1

] [
0 −ml sin θ θ̇

0 0

] [
ẋ
θ̇

]
≡ 0,

and hence (19) can be reduced to

−ϕ⊥ M(q)M−1
d �d ė = 0.

Then, one feasible solution for �d can be derived as

�d = κ Md M−1(q)ϕ�, (22)

wherein κ ∈ R
+ is a positive damping gain. To guar-

antee that �d is positive semi-definite, we take

� = ϕTT (Md M−1)T = ϕT Md M−1.

By further substituting M(q) of (2) and Md of (21) into
(22), it is derived that

�d = κ

α2 · 1

det(M)

[
ml2 −ml cos θ

−ml cos θ M + m

]
·

[
1 0
0 0

]
· 1

det(M)
·
[

ml2 −ml cos θ

−ml cos θ M + m

]

= κm2l2

α2(det(M))2

[
l2 −l cos θ

−l cos θ cos2 θ

]
︸ ︷︷ ︸

H

, (23)

where

det(M) = ml2(M + m sin2 θ) > 0

denotes the determinant of M(q). It is easy to check
that

l2 > 0, det(H) = l2 cos2 θ − l2 cos2 θ = 0,

which illustrates that H and further �d are posi-
tive semi-definite. Consequently, the third term in the
bracket of (17) is calculated as

M(q)M−1
d �d ė = κϕϕT Md M−1 ė

= κ

α det(M)

[
ml2 ẋ − ml cos θ θ̇

0

]
.

(24)

Subsequently, we proceed to solve Pd(e). Substitut-
ing the equations of (2), (3), and (21) into (20) yields
the following expressions:

[
0 1

] {[
0
mgl sin θ

]
−

[
M + m ml cos θ

ml cos θ ml2

]

·
[

α 0
0 α

] [
∂ Pd
∂ex
∂ Pd
∂θ

]}
= 0 	⇒

[
0 1

] [
−α(M + m)

∂ Pd
∂ex

− αml cos θ
∂ Pd
∂θ

mgl sin θ − αml cos θ
∂ Pd
∂ex

− αml2 ∂ Pd
∂θ

]
= 0,

which results in the following partial differential equa-
tion:

α cos θ · ∂ Pd(e)
∂ex

+ αl · ∂ Pd(e)
∂θ

− g sin θ = 0. (25)

After solving (25), we can derive the following
result:

Pd(e) = − g

αl
cos θ + Ω

(
−ex + 1

l
sin θ

)
, (26)

where Ω(·) ∈ R represents an arbitrary scalar function.
To guarantee that Pd(e) is positive definite with respect
to ex (t) and θ(t), Ω(·) in (26) is chosen as

Ω(·) = g

αl
+ kp ln

[
cosh

(
ex − 1

l
sin θ

)]
, (27)

with kp ∈ R
+ being a positive control gain yet to be

introduced. Hence, Pd(e) can be obtained from (26)
and (27) as

Pd(e) = g

αl
(1 − cos θ) + kp ln

[
cosh

(
ex − 1

l
sin θ

)]
,

(28)
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which indicates that

∂ Pd(e)
∂ex

= kp tanh

(
ex − 1

l
sin θ

)
, (29)

∂ Pd(e)
∂θ

= g

αl
sin θ − kp

l
tanh

(
ex − 1

l
sin θ

)
cos θ.

(30)

Thus, the fourth term in the bracket of (17) can be
derived as

M(q)M−1
d

∂ Pd

∂e

= α

[
(M + m)

∂ Pd (e)
∂ex

+ ml cos θ
∂ Pd (e)

∂θ

ml cos θ
∂ Pd (e)

∂ex
+ ml2 ∂ Pd (e)

∂θ

]
. (31)

After substituting (2), (3), (8), (18), (24), (30), (29), and
(31) into (17) and making some mathematical arrange-
ments, the control law is finally obtained as2

F(t) = − αkp(M + m sin2 θ) tanh

(
ex − 1

l
sin θ

)

− κml

α det(M(q))
(l ẋ − cos θ θ̇) − mg sin θ cos θ

− ml sin θ θ̇2. (32)

The control law (32) can drive the system state to the
equilibrium point, as will be supported by the theorem
stated in the next section.

Remark 2 The introduction of the hyperbolic function
tanh (·) in F(t) is of great benefit in the sense that it
effectively reduces the initial control efforts, and thus
guarantees smooth start of the cart. For zero initial con-
ditions, i.e., x(0) = 0, ẋ(0) = 0, θ(0) = 0, θ̇ (0) =
0 	⇒ ex (0) = −xd , the initial control efforts can be
calculated from (32) as

|F(t)| = |αkp M · tanh (−xd)|
≤ αkp M · min{| · xd |, 1},

wherein the last term is the initial control force for the
case without saturation. Thus, if the desired cart posi-
tion xd is very far, that is, |ex (0)| = | − xd | = xd � 1,

2 Owing to the smooth property, the hyperbolic tangent function
tanh(·) in the controller (32) does not affect the uniqueness and
existence of the solutions of the closed-loop (objective) system.

the proposed controller can effectively reduce the ini-
tial control force and achieve soft start of the cart, which
can hence effectively reduce the cart acceleration and
avoid exciting large-amplitude load swing. In addition,
the presented controller also reduces the control efforts
during the overall transportation process, which will
be demonstrated by both the simulation and the exper-
imental results provided in Sect. 5.

Remark 3 It is worthwhile to point out that, for the par-
tially saturated controller part, one can conveniently
replace the hyperbolic tangent function tanh(·) with
other smooth saturated functions such as arctan(·) and
so on, with guaranteed stability and convergence prop-
erties.

Remark 4 Different from linear control systems, there
are no general guidelines to select control gains with
systematic procedures for nonlinear control systems
such as cranes. After a lot of simulation and experi-
mental tests, some rules are summarized at this point
for choosing suitable parameters of the proposed con-
troller. More precisely, the effects of kp and κ are anal-
ogous to those of proportional and derivative gains in
traditional proportional integral derivative (PID) con-
trol, respectively; therefore, one may borrow ideas from
PID control tuning for selecting kp and κ . The parame-
ter α provides extra flexibility to tune the response of
the control system, and we can set it as a specific pos-
itive constant value when choosing kp and κ . Once kp

and κ are determined, we could further change the value
of α to yield better system response.

4 Stability and performance analysis

We will illustrate the convergence of the closed-loop
(objective system) signals together with the corre-
sponding stability analysis using Lyapunov-based tech-
niques. The following theorem holds for the proposed
control law (32) that converts the crane dynamics into
the objective system (10) with Md , �d , and Pd(e)
selected in (21), (23), and (28), respectively.

Theorem 1 The objective system (10) is asymptoti-
cally stable at the equilibrium point, that is,

lim
t→∞

[
x(t) ẋ(t) θ(t) θ̇(t)

]T = [
xd 0 0 0

]T
.
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Proof To prove this theorem, we substitute Pd(e) of
(28) into (11) to derive the Lyapunov function candidate
as

V (t) = 1

2
ėT Md ė + kp ln

[
cosh

(
ex − 1

l
sin θ

)]

+ g

αl
(1 − cos θ) ≥ 0. (33)

Taking the time derivative of (33) along the trajectories
of (10) directly indicates the result of (12). Then, using
the expression (23), (12) can be rewritten as

V̇ (t) = − κm2l2

α2(det(M))2 ėT
[

l2 −l cos θ

−l cos θ cos2 θ

]
ė

= − κm2l2

α2(det(M))2 · (lėx − cos θ θ̇)2 ≤ 0. (34)

Therefore, the equilibrium point of the closed-loop
system (10) is Lyapunov stable, and the following con-
clusions can be drawn from (7), (32), and (34):

ex (t), ėx (t) (i.e., ẋ(t)), θ̇ (t) ∈ L∞
	⇒ x(t), F(t) ∈ L∞. (35)

To accomplish the proof, let S be defined as

S �
{
(x, ẋ, θ, θ̇ ) | V̇ = 0

}

and denote M as the largest invariant set in S. Then, it
can be shown from (34) that in M

lėx − cos θ θ̇ = 0 	⇒ ex − 1

l
sin θ = C1, (36)

where C1 is a yet-to-be-determined constant. Before
solving C1, we substitute (6) into (5) and rearrange the
resulting formula to produce

(M + m sin2 θ)ẍ − mg sin θ cos θ − ml θ̇2 sin θ = F.

(37)

By substituting (32) into (37) and employing the con-
clusion of (36), one derives the following result:

ẍ = −αkp tanh(C1). (38)

It is evident from (38) that ẋ(t) increases/decreases at
the rate of −αkp tanh(C1). If C1 is a nonzero constant,

then it indicates that ẋ(t) = −αkp tanh(C1) · t → ∞
as t → ∞, which contradicts the fact of (35), so we
can conclude that

C1 = 0 	⇒ ẍ = −αkp tanh(0) = 0. (39)

Then, it follows from (38) that ėx (t) = C2 with C2

being a constant. Performing some similar analyses
with C1, it can be shown that

ėx = C2 = 0 	⇒ ex = C3, (40)

where C3 is a constant. Applying (39) to (36) yields

lex = sin θ,

which, together with (6), (39), and (40), indicates that

θ̈ = −gex = −gC3.

Then, if the constant C3 is nonzero, θ̇ (t) → ∞ as
t → ∞, which apparently contradicts the conclusion
of (35); consequently, C3 �= 0 is invalid. Thus, from
(36) and (40), we have that

ex = C3 = 0 	⇒ sin θ = 0. (41)

By employing the practical assumption that −π <

θ(t) < π , it is concluded that3

θ = 0 	⇒ θ̇ = 0. (42)

On the basis of (40), (41), and (42), we conclude that
the largest invariant set M contains only the equilibria.
Then, it follows, by invoking LaSalle’s invariance the-
orem [39], that the closed-loop system state variables
are asymptotically convergent to the equilibrium point.

��

5 Numerical simulation and hardware
experiments

We will present some numerical simulation studies and
hardware experimental results to confirm the practical
performance of the proposed control method.

3 It is worthwhile to point out that it is generally assumed that
−π/2 < θ(t) < π/2 [16–19,22,28,29], which means that the
load will not go above the cart in practice. Hence in this sense,
we have relaxed this assumption from a mathematical viewpoint,
and an almost global asymptotic control result is obtained.
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5.1 Numerical simulation

Through simulation studies, we intend to compare the
control performance of the proposed method with the
existing energy-based nonlinear controller in [20,21]
expressed as follows:

Fnc = −kpe − kd ẋ + kv[ζ(θ, θ̇) − m sin θ cos θ θ̇ ẋ]
kE + kv

,

(43)

where kp, kd , kv, and kE ∈ R
+ are positive con-

trol gains and m(θ) = M + m sin2 θ, ζ(θ, θ̇ ) =
−m sin θ(l θ̇2 + g cos θ).

The crane system’s physical parameters in the sim-
ulation are configured as follows:

M = 4 kg, m = 2.5 kg, l = 1.5 m, g = 9.8 m/s2.

The control gains for both controllers are carefully
tuned until their respective best performance is
achieved, where the gains for the proposed controller
are given as kp = 1.1, α = 1, κ = 40 and those
for the nonlinear controller (43) are kp = 25, kd =
50.5, kE = 1, and kv = 1.5.

To show the advantage of the proposed controller,
we implement 3 groups of simulation studies in total.
In the 1st group, the desired cart positions are set as
xd = 1 m, xd = 2 m, and xd = 4 m, respectively.
Then in the 2nd group, we replace the desired location
xd = 2 m with a converging trajectory given as

xd(t) = 2(1 − e−8.33t3
) [m]. (44)

Finally, in the 3rd group, we test the robustness of
the proposed method, where the desired cart position
is xd = 2 m. The corresponding simulation results are
given in Figs. 1, 2, 3, and 4.

The 1st Group It is clearly seen from Figs. 1 and 2
that for all three cases (the shorter distance xd = 1 m,
xd = 2 m, and the longer distance xd = 4 m), the pro-
posed controller achieves better control performance
(smaller load swing) than the nonlinear controller (43)
with much less control efforts. Though the transporta-
tion time for the energy-based method (43) is similar in
the three studies, the paid price is that the (initial) con-
trol efforts (see the partially zoomed-in plot in Fig. 1)
and the load swing angles increase sharply with longer
transportation distance (the swing angle even reaches
as much as almost 30◦), which is dangerous and unex-
pected in practice. By contrast, the proposed control
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Fig. 1 The 1st group: simulation results for the nonlinear con-
troller (43) (solid line xd = 1 m; dotted-dashed line xd = 2 m;
dashed line xd = 4 m)
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Fig. 2 The 1st group: simulation results for the proposed con-
troller (32) (solid line xd = 1 m; dotted-dashed line xd = 2 m;
dashed line xd = 4 m)

method achieves “soft” load transportation with well-
suppressed load swing (less than 5◦), as clearly shown
in Fig. 2, which is beneficial in real-world applications.

It should be noted that, for load transportation of
different distances, one may reduce the load swing of
the energy-based controller (43) by retuning the con-
trol gains at the expense of longer transportation time.
Nonetheless, it is a cumbersome work since there are
currently no general gain tuning guidelines for nonlin-
ear control systems. Hence, it is another advantage of
the proposed control system by noting that the same set
of control gains work well for different distance trans-
portation processes, as is clearly illustrated in Fig. 2.
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Fig. 3 The 2nd group: simulation results (solid line the proposed
controller (32); dashed line the nonlinear controller (43))
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Fig. 4 The 3rd group: simulation results subject to disturbances

The 2nd Group In this group, we preliminarily val-
idate the performance of the proposed method in the
case of trajectory tracking, where the trajectory (44) is
used. From Fig. 3, one can clearly see that the proposed
controller (32) (solid line) still performs much more sat-
isfactorily, in the tracking case, than the energy-based
one (dotted line) [20,21], with similar transferring effi-
ciency and much less control efforts.

The 3rd Group The robustness of the proposed
approach with respect to disturbances is verified. To
do so, we add sinusoid disturbances (amplitude: 2◦,
period: 0.5 s) to the load swing between 16 and 18 s.
The response of the control system is depicted in Fig. 4,
from which we can find that the disturbances are got rid

Fig. 5 The hardware gantry crane testbed

of rapidly. This shows that the proposed method works
well in the presence of external disturbances.

5.2 Hardware experimental verification

We will further present some experimental results
to validate the performance of the proposed con-
trol approach. The experiments are implemented on
a gantry crane testbed as shown in Fig. 5 (see also
[15,22,35] for some descriptions regarding the test-
bed), where the physical parameters are configured as

M = 6.5 kg, m = 1 kg, l = 0.75 m, g = 9.8 m/s2.

(45)

We set the desired cart location as xd = 0.6 m. The
friction parameters in (4) are determined, after offline
experimental calibration, as [15,22]

Fr0 = 4.4, ε = 0.01, kr = −0.5.

The control gains are carefully chosen for the proposed
controller (32) as kp = 2.8, α = 1, κ = 44, and
for the nonlinear controller (43) as kp = 60, kd =
7.5, kE = 1.2, and kv = 1.8. For control implemen-
tation, the Matlab/Simulink RTWT running under
Windows XP is utilized with the control period as 5
ms. We implement 2 sets of experiments to verify the
performance of the proposed controller in the case of
exact system model knowledge and uncertain system
model knowledge, respectively.

The 1st Set—Exact System Model Knowledge The
system parameters M, m, and l in controllers (32) and
(43) are set the same with those in (45). The correspond-
ing experimental results are presented from Figs. 6 to
7. To make the experimental results more understood,
we also provide some quantified results, as shown in
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Fig. 6 The 1st set (exact system model knowledge): exper-
imental results for the nonlinear controller (43) (dashed line
xd = 0.6 m)
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Fig. 7 The 1st set (exact system model knowledge): exper-
imental results for the proposed controller (32) (dashed line
xd = 0.6 m)

Table 1; x f denotes the final cart location, θmax denotes
the maximum swing amplitude, θr denotes residual
swing (referring to the maximum swing amplitude after
8 s), max {|Fa(t)|} represents the maximum actuating
force amplitude, and

∫ 20
0 F2

a (t)dt is used to depict the
consumed energy [36].

With regard to the transferring efficiency, it is
observed from Figs. 6 and 7 and Table 1 that both con-
trol schemes drive the cart to reach the desired loca-
tion accurately within about 8 s. Yet, the proposed con-
troller suppresses the load swing to a smaller range and
eliminates the residual swing more efficiently than the
nonlinear controller (43). The improved control perfor-
mance is brought about by the enhanced internal cou-
pling between the cart motion and load swing, which
benefits from the elaborately designed structure of the
objective system (10). Further exploring the experi-
mental results, one can see that the control efforts of
the proposed control law, especially at the beginning,
are much smaller due to the benefit of the introduc-
tion of the tanh(·) function, whose saturated feature
effectively reduces the initial control force and corre-
spondingly decreases the energy consumption.

Remark 5 It is noted that the control efforts in the
experiments are a bit different from those in the simu-
lation studies, in terms of amplitudes and shapes. This
is due to that the nonlinear friction force, which greatly
influences the actuating input, was not considered in the
simulation studies. On the other hand, it is observed that
the load swing amplitude (corresponding to xd = 2 m)
in the simulation studies is similar to that (correspond-
ing to xd = 0.6 m) in the experiments. This also makes
sense because the cable in the simulations (l = 1.5 m)
is set much longer than that (l = 0.75 m) in the exper-
iments, and longer cable length can reduce the load
swing amplitude from a potential energy viewpoint
[θ(t) decreases as l increases for the same potential
energy mgl(1 − cos θ)].

The 2nd set—uncertain system model knowledge As
a means to test the robustness of the designed con-
trol system, the system physical parameters (load mass
m and cable length l) are changed as m = 1.5 kg,

and l = 0.8 m, while in (32) we still use the parameters
(i.e., the nominal values m = 1 kg, and l = 0.75 m);
and the control gains in the 1st set of experiments. The

Table 1 Quantified experimental results (corresponding to Figs. 6, 7, and 8)

Controllers x f (m) θmax (◦) θt (◦) max {|Fa(t)|} (N)
∫ 20

0 F2
a (t)dt (N2 · s)

Controller (43) in the 1st set 0.598 4.57 1.77 15.33 313.30

Proposed controller (32) in the 1st set 0.597 2.91 0.22 11.51 228.73

Proposed controller (32) in the 2nd set 0.598 2.96 0.51 11.83 293.36
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Fig. 8 The 2nd set (uncertain system model knowledge): exper-
imental results for the proposed controller (32) (dashed line
xd = 0.6 m)

experimental results are shown in Fig. 8 and Table 1.
It can be seen that even in the presence of parame-
ter uncertainties, the proposed controller still achieves
satisfactory cart positioning and swing suppression per-
formance. This experiment indicates that the proposed
control system shows good robustness to parameter
uncertainties.

6 Conclusion and discussion

This paper has presented a partially saturated nonlin-
ear control strategy for underactuated gantry cranes,
by converting the crane dynamics into an objective
system with guaranteed control performance. Due to
the specific structure of the constructed objective sys-
tem, the controller is obtained quite straightforwardly
by solving one partial differential equation. Moreover, a
smooth hyperbolic tangent function is introduced in the
control structure to ensure “soft” cart start and reduce
the control efforts. Both numerical and experimental
results are presented to illustrate the increased con-
trol performance of the proposed scheme with respect
to that of the existing energy-based controllers. In the
future, we will attempt to extend the method to gantry
cranes of higher dimensions in the presence of load
hoisting/lowering.
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